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All second-order, many third-order, and a few fourth-order Runge-Kutta schemes can 
be arranged to require only two storage locations per variable, compared with three needed 
by Gill’s method. 

1. TNTRODUCTION 

There are many criteria to bear in mind when choosing a scheme for integrating 
systems of differential equations, but the storage requirement becomes crucial when- 
ever the systems are very large. For instance, in the simulation of plasmas, there may 
10,000 or even 1,000,000 particles to deal with. Predictor-corrector schemes need the 
storage of a sizable history of the system, but Runge-Kutta schemes, if appropriately 
designed, are more attractive. The purpose of this paper is to describe a set of higher- 
order schemes which require no more storage than is needed by the simple Euler 
method, namely 2N locations, one for each of the N coordinates and N velocities. 

The &h-order explicit Runge-Kutta scheme to advance a set of differential equations 

over a step h is 

2 =f(x) 

x(h) = x(0) + f Wjkj ) 
j=I 

(1) 

The vector x represents the N variables, which include the independent variable if f 
depends explicitly upon it. Tn order for the integration to be accurate to the appropriate 
order in h, the coefficients must obey several conditions, but Kopal [9] gives explicit 
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formulas for the coefficients in terms of some, typically cyZ and CX~, which can be 
chosen arbitrarily. 

Perhaps the most popular of all Runge-Kutta schemes is the classic fourth order: 
a* = Cd.3 = /?s, = fr, CX~ = /3,, = 1, /I,, = 0, w1 = W, = 6, w2 = wQ = &, which needs 
4N locations of storage. Another commonly used method is Gill’s [3]: CQ = C+ = 6, 
aq = 1, /Is2 = 1 - ($)1/2, pJ3 = 1 + (&)1’2, WI = Wq = 6, W, = (1 - (&)9/3, ws = 
(1 -+ ($)rj2)/3. Here only 3N locations are required because only certain combina- 
tions of the early kj need be kept, but on the other hand the irrational coefficients are 
a nuisance. However, Blum [I] has resolved this difficulty by showing that the classic 
method can itself be cast into a 3N storage version, and Fyfe [2] buttoned this up by 
proving that every fourth-order Runge-Kutta scheme can be packed in this way. 

2. THE METHOD 

The principle adopted by Gill, Blum, and Fyfe and in this paper is to leave useful 
information on the register which will receive the contributionf(xJ instead of starting 
with an empty register. Thus the algorithm is 

qj = w-1 + w(x,-1) 
j=l,n (2) 

xj = xi-l + bjqj 

with a, = 0. Successive values of qj and xi overwrite the previous ones so at any stage 
only 2N storage locations q and x are required. 

The parameters aj and bj can be expressed in terms of the coefficients in (1) only if 
these coefficients bear certain ratios to each other; this will be discussed in detail for 
schemes of various orders in Sections 4 to 6. The result is 

b, = w, , 

aj = 
wj-l - bj-l 

Wj 
(j # 1, wi f O), 

a. = Pj+l i-l - aj 
3 

bj 
(j# 1, wj = 0). 

(3) 

No advantage can be gained by trying to generalize (2) by including a term in xj-l 
in the expression for qj with a corresponding modification of the expression for xj . 
This is because the additional equations determining the new parameters turn out to 
be linearly dependent on those for aj and bj . 
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3. ROUND-OFF ERRORS 

The algorithm adds contributions arising from the earlier velocities into the position 
vector x, but does not contaminate the velocity registers with contributions from the 
positions. This feature can be exploited to reduce the effect of round-off errors [3]. 
The crucial point is that the changes in x in a single step are usually much smaller 
than the values of x themselves. Hence the quantities in q are held to greater precision 
than those in x and so we need only consider the round-off errors arising in the x 
registers. 

The round-off error inevitably introduced at stage ,j is 

ej = (Xj - X,-l> - bjqj (4) 

This is scaled and added into the q register at the end of each stage so that the algo- 
rithm becomes 

qj = ajqj-l - ejWl/wj + hf(x,-&. (5) 

This ensures that the positions at the end of the complete step x,~ are independent 
of ej , j < n, and are only affected by the current round-off e, . However, this contribu- 
tion can itself be canceled during the n stages of the next step by using 

41 = -4% + w4; (6) 

hence there will be no accumulation of the dominant (proportional to / x 1) round-off 
error during the calculation. Should any of the wj be zero, then it is clear from (5), (6) 
that the corresponding ej cannot be nullified but will have to be left to accumulate in 
the usual way. 

Jt should be remarked that a further N storage locations are not required for dealing 
with the vector ej, because each element can at once be added into the register q. 
Thompson [7] showed that the round-off cancellation property was destroyed in a 
well-known algorithm for Gill’s method, and it is important that the scheme described 
here should not be “simplified” to a form which is algebraically, but not computa- 
tionally, identical. 

We have seen that every round-off error can be expunged not later than the end of 
the next step. However, during its temporary sojourn in the vector x, it makes slight 
distortions of the calculated derivativesf(xJ. The resulting errors in the final position 
x, depend on the exact form of f(x), but we may obtain a reasonable estimate of the 
effect by assuming that aflax is constant throughout a single step. The result, for a 
three-stage method, is 

6x = g lw2e2 + [WI + (wp - &)I eI 

+ [IQ + (it’s - 4 + (Q - 6) (1 - 2)] es\. (7) 
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The three ej are independent random variables so 6x will be least when G, the 
sum of the squares of the coefficients in (7), is minimized. The quantity E is taken as a 
figure of merit; it is given in Table I for each of the schemes discussed below. 

4. SECOND-ORDER SCHEMES 

Second-order schemes can be expressed in terms of a single coefficient 01~ [9], the 
other ones being W, = 1 - 101-l Z 2 , W, = $Q. All schemes can be accommodated by 
the low-storage algorithm and the only case which is at all unfavorable is the classic 
form, N$ = -i, because there the zero coefficient w1 means that the round-off errors e, 
cannot be nullified. 

5. THIRD-ORDER SCHEMES 

The low-storage algorithm can be used if 

(I-cYcu,-ww,)b,=(a~-aol,)w,. (8) 

Using Kopal’s expressions for the coefficients this condition becomes, in terms of eye 
and (Ye, 

or,2(1 - lX2) + CX3(CX22 + &IX2 - 1) + (Q - &X2) = 0. (9) 

The locus of points in the 01~) 01~ plane are shown in Fig. 1, where the dots represent 
schemes which seem attractive for various reasons, e.g., rational coefficients, low 

t 

% 11 

16,&3 

FIG. 1. The curve denotes values of the coefficients 01~ , cc3 for which third-order low-storage 
schemes are possible. The numbered dots show the schemes which are considered in detail in Table I 
and the circles represent the degenerate fourth-order schemes. 
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truncation error, low E, which are discussed further. There are in fact two further 
branches of the curve, which pass close to the points (2& 4) and (-3, -I$), but none 
of those schemes have favorable properties. 

6. FOURTH-ORDER SCHEMES 

There are no values of 01~ and 01~ which simultaneously satisfy the three conditions 
necessary for 2N storage: 

0% - &J b3 = (P42 - &J w3 7 
(1 - w‘j - a3) b, = (1 - C-X3) WQ ) (10) 

(Al - 4 b, = (P31 - 4 A* * 

However, Kopal [9] has described four special schemes in which some coefficients can 
be allowed to approach zero, while others tend to infinity. A sufficient condition for 
the utility of these schemes is that f(x) remains bounded as x -+ co. If this is true, 
then, in the limit, one of the kj makes no contribution at any further stage of the 
computation and so it might as well never be calculated in the first place. Thus fourth- 
order accuracy is achieved by a three-point scheme. 

In Table I, these schemes have been written in quasi-third-order form by deleting 
all the uninteresting zeros and infinities and moving up the remaining coefficients 
into the appropriate columns. Table II gives the definitions of the limiting processes 
which led to the schemes. Being three-point schemes, these need only satisfy (8) 
instead of the impossible conditions (lo), and two of the four schemes do indeed 
satisfy (10) which means that there do exist fourth-order 2N storage schemes. 

TABLE II 
Stability Properties of the Degenerate Fourth-Order Schemes 

Case Definition 

16 a2 = g 013 + p 
17 013 = 012 WQ + 0 
18 OLa = 0 wg + 0 
19 Lx,=1 w,+o 

POI) nimit 

1 +y+frua -2.000 
1 +Y++Y”+$gy” -4.520 
1+y+$y*+$y8 -3.087 
1 +y++y2+&rs -4.520 

7. STABILITY ANALYSIS 

A measure of the maximum allowable step h can be obtained by finding out what 
the integration scheme makes of the single differential equation 
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as a function of the complex variable h. It is readily shown [4] that, in all nondegene- 
rate schemes of order p < 4, the stability polynomial (the growth of the single mode 
over the step h) is 

P(M) = i hjhj/j! 
j=O 

The polynomial is different for the four special cases described in the previous section 
and the results are given in Table II. Of particular interest is the value of hX when h is 
real and as negative as possible: the table shows that three of the four schemes have 
enhanced stability properties over the conventional schemes for which hh is -2 for 
p = 2, -2.513 forp = 3, and -2.785 forp = 4. 

8. TRUNCATION ERRORS 

Ralston [5] has set up criteria for assessing Runge-Kutta schemes based upon the 
error bound for the terms of next higher order in h. His results are expressed in the 
form 1 E j < 7 ML", where 77 is a numerical constant and M and L are norms of the 
function J Values of 7 were computed using Ralston’s formulas and are given in 
Table I. It should be noted that bounds cannot be given for the degenerate fourth- 
order schemes because Ralston’s results cannot take cognizance of the fact that f(x) 
is bounded at large X. 

9. CONCLUSION 

The results in Table I show that low-storage schemes are possible up to the fourth 
order, that nearly all schemes can be immunized against round-off error, and that 
their truncation error bounds are comparable to those of the more familiar Runge- 
Kutta methods. 

Many authors have pointed out that no one scheme can be superior to all others for 
all sets of differential equations: by a judicious choice of example any scheme could be 
made to appear the best. So test A described below was selected to be useful in the 
application which motivated this research work, namely the simulation of guiding 
center plasma in two dimensions [6, 81, rather than to highlight any particular scheme. 

Test A was to see how the schemes coped with simulating a single pair of particles 
for which the equation of motion is 

where the complex variable r represents the separation between the two particles. The 
orbit is circular but the frequency varies inversely as the square of the radius. The 
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column “Test Ag” in Table I shows the discrepancy in j Y j2 after trying to follow the 
motion for one period with only eight time steps. The discrepancy falls off according 
to the power of h which is given in column “A,, .” Cases 3 and 17 are particularly good 
and it can be shown that for any step h whatsoever they yield perfectly circular orbits 
although with a frequency which is bounded as I r I2 + 0. (Tn fact they both give the 
m = I, IZ = 1 PadC approximant to the complex exponential, something which 
normally is only to be expected from an implicit Runge-Kutta scheme [4, pp. 131- 
1351.) Case 7 (a2 = 4, cllg = Q) also performs this test well, much better, for instance, 
than any of the familiar third- or fourth-order schemes. 

In test B, the result of integrating 

in 32 steps from 0 to 1 is compared with the known solution x = sin t. Here case 6 
performs as well as, and case 13 better than, the standard fourth-order schemes. 

If the lowest truncation error bound is desired, then case 9 should be chosen, as its 
value of 7, -+, is almost as good as Ralston’s overall minimum 7, &. If the least pos- 
sible indirect round-off error is considered important, then the choice is case 15 
(which has a value of a2 lying outside the usual range of values 0 to 1). On the other 
hand if stability is the criterion, then either case 17 or case 19 should be used. Thus no 
one scheme can be singled out as preferable to the others and it is suggested that 
users might try out a variety of schemes on the differential equations which they wish 
to solve. The author’s choice is case 7, for which the algorithm is 

q1 = W,xo) - he3 , 

Xl = x0 + (l/3) 419 

q2 = WC4 - (10/3) el - (5/g) q1 9 

x2 = xl + (15/16) q2, 

q3 = W2) - (15/g) e2 - (153/12g) q2, 

x3 = x2 + (g/15) 43 

In principle, these high-order low-storage schemes could be used either to increase 
the accuracy of the integration or to allow a larger time step to be used. For instance, 
in the author’s simulation experiments, case 7 conserves energy 10 times better than 
the leapfrog code, or else reduces the computational effort to a quarter. However, the 
time step might well be limited by other considerations, for instance, the cell transit 
time in particle-mesh codes, so we would then have to settle for improved accuracy. 
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